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Abstract

The safety and e�ciency of free 
ight will bene�t
from automated con
ict prediction and resolution advi-
sories. Con
ict prediction is based on trajectory predic-
tion and is less certain the farther in advance the pre-
diction, however. An estimate is therefore needed of the
probability that a con
ict will occur, given a pair of pre-
dicted trajectories and their levels of uncertainty. This
paper presents a method to estimate that con
ict prob-
ability. The trajectory prediction errors are modeled as
normally distributed, and the two error covariances for
an aircraft pair are combined into a single, equivalent
covariance of the relative position. A coordinate trans-
formation is then used to derive an analytical solution.
Numerical examples and a Monte Carlo validation are
presented.

Introduction

The economics and e�ciency of air transportation
in the continental U.S. could be improved signi�cantly
if the rigid routing restrictions [1] currently imposed by
the Federal Aviation Administration (FAA) were relaxed
to allow more direct or wind-optimal trajectories. The
current routing restrictions help to maintain the safe and
orderly 
ow of tra�c, but new technologies in the areas
of tracking, prediction, and communication are being de-
veloped that can be used to maintain or improve safety
while relaxing or eliminating those restrictions. The ul-
timate goal is free 
ight [2, 3, 4], which could save the
airlines several billion dollars per year in direct operating
costs, according to the Air Transport Association (ATA).
The safety and e�ciency of free 
ight will bene�t from
automated con
ict predictions and resolution advisories.
By de�nition, a con
ict (not to be confused with a colli-
sion) occurs when two or more aircraft come within the
minimumallowed distance between each other. The min-
imumallowed horizontal separation for en-route airspace
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is currently 5 nautical miles (nmi). The vertical separa-
tion requirement above an altitude of 29,000 feet (ft) is
currently 2000 ft; below that level it is 1000 ft.

Aircraft trajectory prediction is inexact, primar-
ily because of wind modeling and prediction errors and
secondarily because of tracking, navigation, and con-
trol errors. Wind estimates, based on the Mesoscale
Analysis and Prediction System Rapid Update Cycle
(MAPS/RUC) [5, 6], are provided by the National
Oceanic and Atmospheric Administration (NOAA). Air-
craft in cruise are usually programmed stay on track
laterally and vertically and to maintain a particular air-
speed or Mach number. The farther in advance trajecto-
ries are predicted, the more uncertain those predictions
are, particularly in the along-track direction, because the
resulting groundspeed depends on the winds, and the
uncompensated e�ects of wind errors accumulate over
time. Because con
ict prediction is based on trajectory
prediction, the farther in advance a potential con
ict is
predicted to occur or not to occur, the less certain that
prediction is likely to be. A method is needed to estimate
the level of certainty.

The optimal time to initiate a con
ict resolution
maneuver is a trade-o� between e�ciency and certainty.
The farther in advance a maneuver is initiated, the more
e�cient it is likely to be in terms of extra distance 
own,
but the less certain will be exactly what maneuver is
required or whether a maneuver is required at all. The
later a maneuver is initiated, on the other hand, the more
certain will be exactly what maneuver is required, but
the less e�cient and more harsh the maneuver is likely
to be. The determination of the optimal time to initiate
a maneuver, therefore, requires an esimate of con
ict
probability.

The determination of the optimal maneuver to be
executed also requires a method of estimating con
ict
probability, because the goal of con
ict resolution is to
reduce the post-resolution con
ict probability to some
acceptable level. The con
ict probability cannot be re-
duced to zero without introducing gross ine�ciency, but
that is not necessary because human air tra�c con-
trollers will be available to catch any unresolved con-

icts. The methods presented in this paper are intended
to assist rather than replace human air tra�c controllers.
That is, they are intended to provide automated advi-
sories for the controllers, but not to make the ultimate
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decisions.
A method is developed in this paper to estimate

the con
ict probability for a pair of aircraft in free 
ight.
The trajectory prediction errors are modeled as normally
distributed, and the two error covariances for an aircraft
pair are combined into a single, equivalent covariance
of the relative position. A coordinate transformation is
used to derive an analytical solution. The paper is or-
ganized as follows. First, some background is given on
modeling of trajectory prediction errors and con
ict pre-
diction. The con
ict probability estimation algorithm is
then developed. Finally, some numerical examples and
a Monte Carlo validation are presented.

Con
ict Prediction

Con
ict prediction can be divided into the follow-
ing three steps. First, the trajectories of all aircraft in
the region of interest are predicted for approximately the
next 20 to 30 minutes (min). These deterministic predic-
tions are based on current estimated positions and veloc-
ities, 
ight plans, and predicted winds aloft. This com-
plex modeling and software problem has already been
solved for arrival tra�c as part of the Center/Tracon
Automation System (CTAS) [7], and that solution will
be adapted for en-route and departure tra�c also. The
second step is to coarsely screen all possible aircraft pairs
to eliminate those with a negligible possibility of con-

ict. The third step, which is the subject of this paper,
is to estimate the con
ict probability for those remain-
ing aircraft pairs. This probability involves the predicted
trajectories and an estimate of their uncertainty.

The lateral feedback loop is typically closed around
cross-track position either by the pilot or by a Flight
Management System (FMS). The stabilized cross-track
rms (root mean square) prediction error is approximately
constant, with typical magnitudes from less than 0.5 nmi
for aircraft equipped with an FMS to more than 1 nmi for
those without. This magnitude could also be a function
of the crosswind magnitude.

Longitudinal position control involves using the
throttle to compensate for unpredictable variations in
headwind or tailwind. Because such compensation tends
to be ine�cient in cruise, the longitudinal feedback loop
is usually closed around Mach number or airspeed, but
not groundspeed or along-track position. For trajectory
predictions of up to 20 or 30 min, the unstabilized along-
track rms error tends to grow approximately linearly, as
illustrated in �gure 1, with a typical growth rate of 0.25
nmi/min (15 kts) in cruise. This growth rate is primar-
ily due to wind-prediction bias error, and it could be
reduced in the future with improved wind modeling or
with low-bandwidth control of along-track position, if
such control can be done e�ciently enough.

The vertical rms error is primarily due to baro-

altimeter error and secondarily due to altitude control
error. The vertical error and along-track rms prediction
error growth rate are both greater in climb and descent
than in cruise. For predictions involving more than one

ight regime (such as climb and cruise, for example) the
total rms error is the sum of the contributions from each
segment. Turns also tend to be imprecise and therefore
add a signi�cant amount of uncertainty that should be
accounted for.

For purposes of this paper, the magnitudes of the
rms prediction errors and their growth rates are merely
parameters. What is important is that the prediction er-
rors can be approximated as normally distributed (Gaus-
sian), because the algorithm to be presented in this pa-
per is based on that model. Many other estimation al-
gorithms, such as the classical Kalman �lter, are also
based on the normal distributionmodel, of course. Ballin
and Erzberger [8] tested the accuracy of the trajectory-
prediction software that is installed in the Fort Worth
Air Route Tra�c Control Center as part of CTAS. They
analyzed data from cruise segments of over four thou-
sand 
ights (eliminating those with delays that could be
caused by unscheduled maneuvers) and found that the
along-track prediction errors were indeed very close to
normally distributed.

The normally distributed prediction errors can be
represented as ellipses in the horizontal plane or as ellip-
soids in space. The error ellipses tend to have their major
principal axis in the along-track direction and their mi-
nor principal axis in the cross-track direction. (Note that
the uncertainty ellipse for a normally distributed random
variable x is de�ned as the solution of zTZ�1z = c2,
where z = x � E(x), Z = cov(z) � E(zzT ), E is the
expected value, and c is a constant that can be assumed
to be unity unless otherwise noted.)

The cross-correlation of prediction errors between
aircraft can also be important because common errors
cancel in the position di�erence or relative position.
Unfortunately, the cross-correlation is more di�cult to
model than the individual covariances because it de-
pends on the trajectories and a spatial wind-error cor-
relation model. That correlation model will be a func-
tion of both separation distance and heading angular dif-
ference. Aircraft pairs with nearly perpendicular 
ight
paths will tend to have weakly cross-correlated predic-
tion errors because their along-track positions are af-
fected by di�erent wind components. Aircraft pairs with
small path-crossing angles (and small minimum separa-
tions), on the other hand, will tend to have more strongly
cross-correlated prediction errors, both because they are
a�ected by a commonwind component and because they
spend a relatively long time close together. Although
this area is open for research, it will not be pursued in
this paper.
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Figure 1: Trajectory prediction error ellipses

Con
ict Probability Estimation

This section is divided into �ve subsections. First,
the method of combining two prediction-error covari-
ances into a single covariance of the relative position
is discussed. Next, a coordinate transformation is pro-
posed that transforms the combined error covariance into
a standard form. Then the analytical solution for the
con
ict probability in two dimensions is developed. The
generalization from two to three dimensions is then dis-
cussed. Finally, the application to con
ict resolution is
previewed.

Combined Error Covariance

The trajectory prediction error for an aircraft will be
modeled as normally distributed, with zero mean and
with a covariance that has eigenvectors in the along-
track and cross-track directions, as explained previously.
The covariance matrix is therefore diagonal in a coor-
dinate system aligned with the aircraft heading. If q is
the aircraft position in such a heading-aligned coordi-
nate system, and �q is the corresponding prediction, then
the prediction error is

~q � q � �q (1)

and the corresponding diagonal covariance matrix is

S � cov(~q) (2)

where cov(x) � E(xxT ) for any random variable x, and
E is the expected value function. If  is the heading
angle in some Earth-�xed reference coordinate system,
then

R �
�
cos � sin 
sin cos 

�
(3)

is a rotation matrix that transforms the heading-aligned
coordinates to the reference coordinates. The position
prediction in the reference coordinate system is then

�p = R�q (4)

The position prediction error is

~p = R~q (5)

and the corresponding covariance matrix is

Q � cov(~p) = RSRT (6)

Because the trajectory prediction errors are mod-
eled as normally distributed, the two error covariances
for an aircraft pair can be easily combined into a sin-
gle equivalent covariance of the position di�erence or
the relative position of one aircraft with respect to the
other. For present purposes, this combined covariance
can be assigned to one of the aircraft, referred to as the
\stochastic" aircraft, and the other aircraft, referred to
as the \reference" aircraft, can be regarded as having no
position uncertainty.

Let subscripts S and R designate the stochastic and
reference aircraft, respectively. The position di�erence
is

�p � pS � pR (7)

The prediction of that position di�erence is

��p � �pS � �pR (8)

and the prediction error is

�~p � �p���p = ~pS � ~pR (9)

The combined prediction error covariance is then

M � cov(�~p) = QS + QR � QSR (10)

where QS and QR are the individual covariances based
on equation 6, and the cross-correlation term QSR is
de�ned as

QSR � E(~pS ~p
T

R
+ ~pR~p

T

S
) (11)

In general, the combined error ellipse corresponding to
M will no longer have principal axes aligned with the
along-track and cross-track directions of either aircraft.
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Figure 2: Encounter geometry

Figure 2 shows an example encounter geometry,
with the combined error ellipse centered on the stochas-
tic aircraft, and the circular con
ict zone (5 nmi radius)
centered on the reference aircraft. The error ellipse cor-
responds to a probability density function that can be
represented as a surface over the ellipse. The ellipse is
actually the intersection of that surface and a horizontal
plane cutting the surface. The total volume under the
surface is unity. The probability of con
ict at a partic-

ular time is the portion of that volume that is within
the circular con
ict zone. An analytical solution has not
been found for this probability, but it is not as impor-
tant as the total probability of con
ict for the encounter,
which is discussed in the following paragraphs.

It is assumed that the aircraft velocities and predic-
tion errors are constant during the encounter or period
of potential con
ict, which is at least approximately true
for most aircraft pairs in free 
ight. The total probabil-
ity of con
ict for the encounter can then be determined
as follows. Project the circular con
ict zone along a line
parallel to the relative velocity to form an extended con-

ict zone, as illustrated in �gure 2. The con
ict prob-
ability is equal to the portion of the volume under the
probability density surface that is within this extended
con
ict zone. The coordinate transformation to be pre-
sented in the next section allows this probability to be
determined analytically.

combined
error
circle

elliptical conflict zone
relative velocity

extended confl ict zone

Figure 3: Transformed Encounter geometry

Coordinate Transformation

Coordinate transformations are often useful for simplify-
ing problems. They are widely used in control theory, for
example. In this case, the con
ict probability is di�cult
or impossible to determine analytically in the original co-
ordinate system. It can be determined numerically, but
a numerical solution is likely to be much less e�cient
and less accurate than an analytical solution. This inef-
�ciency is undesirable for an algorithm that is intended
to run in real time at a very high rate for many years.
Fortunately, a coordinate transformation has been found
that allows an analytical solution.

Let p and � represent the original and transformed
coordinates of position, respectively. A general linear
coordinate transformation is of the form

� = Tp (12)

p = W� (13)

where T is a transformation matrix to be determined,
and W � T�1. The transformations for velocity and
other vectors are of the same form. Combining the de�-
nition

�� � �S � �R (14)

with the de�nitions in equations 7-9 gives

�~� = T�~p (15)

In the transformed coordinate system, the mean predic-
tion error is still zero and the combined error covariance
is

cov(�~�) = TMTT (16)
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where M � cov(�~p) is the combined error covariance in
the original coordinate system from equation 10.

A Cholesky decomposition [9] or \square-root" fac-
torization of the combined error covariance M is of the
form

M = LLT (17)

where L is lower triangular. If T is of the form

T = RL�1 (18)

where R is any orthogonal rotation matrix, then equa-
tion 16 becomes

cov(�~�) = I (19)

where the fact that RRT = I has been used. The com-
bined error ellipse is therefore in the standard form of a
unit circle, as shown in �gure 3. The con
ict boundary,
which was a circle in the original coordinate system, is
an ellipse in the transformed coordinate system, also as
shown in �gure 3.

Analytical Solution

Having the error ellipse in the form of a unit circle
simpli�es the probability computation considerably be-
cause the corresponding two-dimensional (2-D) proba-
bility density function decouples into the product of
two identical one-dimensional (1-D) functions: p(x; y) =
p(x)p(y), where p(x) = exp(�x2=2)=

p
2�. The proba-

bility density function can be represented as a radially
symmetric surface over the circle. The circle is actually
the intersection of that surface and a horizontal plane
cutting the surface. The total volume under the surface
is unity.

In the transformed coordinate system, the extended
con
ict zone is still in the direction of the (transformed)
relative velocity, and the con
ict probability is still equal
to the portion of the volume under the probability den-
sity surface that is within this extended con
ict zone.
The rotation matrix R in equation 18 can be used to
rotate the transformed coordinate system about the ori-
gin. It can therefore be selected such that the relative
velocity is in the positive or negative x-direction. If

�v � vS � vR (20)

is the relative velocity in the original coordinate system,
and

�� � L�1�v �
�
��x
��y

�
(21)

is the partially transformed relative velocity, then

R =
1

k �� k

�
��x ��y

���y ��x

�
(22)

The boundaries of the extended con
ict zone are then
the minimum and maximum values of y on the elliptical
con
ict boundary.

Let �pc and ��c represent the original and trans-
formed coordinates, respectively, of points on the con
ict
boundary relative to the reference aircraft. The equation
of the con
ict boundary is

k �pc k = kW��c k = sc (23)

where sc is the con
ict separation distance (5 nmi) and
W is de�ned in equation 13. This equation can be
squared, then expanded according to

��c �
�
�xc
�yc

�
; WTW �

�
a b

b c

�
(24)

The resulting equation for the elliptical con
ict bound-
ary is

a �x2
c
+ 2b �xc�yc + c �y2

c
= s2

c
(25)

The minimumand maximumvalues of �yc can then
be determined by at least two di�erent methods. One
method is to consider equation 25 as a quadratic equa-
tion in �xc with coe�cients that are functions of �yc.
The minimum and maximum values of �yc can then be
determined by setting the discriminant of that quadratic
equation to zero and solving for �yc. Another method
is to di�erentiate equation 25 with respect to �xc and
solve the equation d(�yc)=d(�xc) = 0, together with
equation 25. The result is

�yc = �sc
p
a=(ac� b2) (26)

at the minimum and maximum points. Note that a is
positive and ac�b2 is positive and invariant with respect
to rotation for any ellipse [10], so the argument of the
square root function must also be positive.

The con
ict probability is the portion of the volume
under the surface of the probability density function that
is within the extended con
ict zone. Because the proba-
bility density function decouples into p(x; y) = p(x)p(y)
and the con
ict boundaries are parallel to the x-axis, the
expression for the con
ict probability Pc can be simpli-
�ed as follows:

Pc =

Z
��y+�yc

��y��yc

Z
1

�1

p(x; y) dx dy

=

Z
��y+�yc

��y��yc

p(y) dy

Z
1

�1

p(x) dx

=

Z
��y+�yc

��y��yc

p(y) dy

= P (��y +�yc)� P (��y ��yc) (27)

where �y � yS�yR is the y-coordinate of the stochastic
aircraft with respect to the reference aircraft, and P is
the cumulative normal probability function. The latter,
de�ned such that P (z) �

R
z

�1
p(s)ds for any random

variable z, can be determined analytically [9]. This an-
alytical solution for the con
ict probability is therefore
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theoretically exact under the assumptions stated previ-
ously.

The main assumption is that the aircraft velocities
are constant (in both magnitude and direction) during
the encounter or period of potential con
ict. Free-
ight
trajectories typically will be fairly direct and have few
turns, so that assumption is likely to be accurate in most
cases. Note that this does not preclude planned turns or
other maneuvers before the encounter begins. For con-
stant velocity, the time at which the minimumpredicted
separation occurs is

tm = t0 +
�pT0�v

�vT�v
(28)

where �p0 is the position di�erence at time t0, and �v is
the constant velocity di�erence, both in terms of carte-
sian coordinates. The position di�erence at minimum
separation is then

�pm = �p0 + (tm � t0)�v (29)

The minumum separation distance itself is k �pm k.
Small variations in aircraft velocity due to wind dis-

turbances or wind-optimal routing have only a small ef-
fect in the immediate vicinity of an encounter, so they
will not signi�cantly violate the assumption of constant
velocity. The predicted velocities at the point of mini-
mum predicted separation are tangent to the 
ightpaths
and can be considered �rst-order linear approximations
to the actual trajectories at that point. In the unlikely
case that a large heading or speed change is scheduled
in the vicinity of a potential con
ict, on the other hand,
the analytical solution for con
ict probability will not be
accurate.

Three-Dimensional Case

If the two aircraft are in level 
ight at di�erent altitudes,
or if one or both of the aircraft are climbing or descend-
ing, the problem is three-dimensional (3-D). The basic
modi�cations required to the 2-D case are discussed in
this section. For simplicity, the along-track axis is de-
�ned as the projection of the predicted velocity vector
on a horizontal plane. The along-track and cross-track
axes are therefore horizontal by de�nition, and the pre-
diction error ellipsoid is modeled as having its principal
axes in the along-track, cross-track, and vertical direc-
tions. For en-route 
ight, the con
ict zone is a cylinder
or disk with a horizontal radius of 5 nmi and a vertical
thickness of 4000 ft.

A coordinate transformation can be used to trans-
form the error ellipsoid into a unit sphere. Most of the
previous analysis still applies, but in three dimensions
rather than two. The transformation can be decoupled
into a 2-D horizontal transformation identical to the one
discussed previously and a vertical transformation that

is a simple scaling. The con
ict zone, which is a circular
cylinder in the original coordinate system, is an ellipti-
cal cylinder in the transformed coordinate system. The
transformation can still be selected such that the relative
velocity is in the positive or negative x-direction.

Consider �rst the case in which both aircraft are in
level 
ight, but at di�erent altitudes. In this case the
relative velocity vector is horizontal, and the projection
of the disc-shaped con
ict zone along the direction of
relative velocity forms a rectangular volume. The con-

ict probability is the product of two cumulative normal
probability di�erences, one that is identical to equation
27, and another of the same form that applies to the
vertical axis. That is, the horizontal con
ict probability
of equation 27 can be generalized to three dimensions by
multiplying it by a vertical con
ict probability factor.
The vertical factor is P (��z +�zc) � P (��z � �zc),
where �z is the predicted vertical separation between
the two aircraft, and �zc is the minimum allowed ver-
tical separation (2000 ft), both normalized (divided) by
the vertical rms error.

A typical vertical rms error, which is caused pri-
marily by baro-altimeter error, is approximately 100 ft.
For all practical purposes, it can be assumed that the
vertical error will not exceed �400 ft for each aircraft
or
p
2 � 400 � 600 ft for the altitude di�erence of two

aircraft. Therefore, if the predicted vertical separation
is less than about 2000� 600 = 1400 ft, the vertical fac-
tor is virtually unity, and the 3-D con
ict probability
is essentially equal to the horizontal con
ict probabil-
ity. If the predicted vertical separation is greater than
about 2000 + 600 = 2600 ft, on the other hand, the ver-
tical factor is virtually zero, and the horizontal con
ict
probability need not even be computed. For a vertical
rms error of 100 ft, therefore, the vertical factor needs
to be computed only if the predicted vertical separation
is between about 1400 and 2600 ft.

The case in which one or both of the aircraft are
climbing or descending is more complicated, unfortu-
nately, because the relative velocity is not horizontal,
and the projection of the disc-shaped con
ict zone along
the direction of relative velocity does not form a rect-
angular volume. The cross section of that volume is a
rectangle with halves of an ellipse attached to the top
and bottom. Numerical integration can be used to ap-
proximate the con
ict probability, if necessary, or some
heuristic approximation may be possible, but that ap-
proximation will not be pursued here.

Application to Con
ict Resolution

The ultimate purpose of con
ict probability estimation
is for use in optimal con
ict resolution. The problem
of con
ict resolution involves deciding when to initiate
a resolution maneuver and what maneuver to execute.
The con
ict probability is an important factor in both
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decisions. This subsection outlines horizontal con
ict
resolution methods presently under investigation. Verti-
cal con
ict resolution is also discussed brie
y.

The optimal time to initiate a con
ict resolution
maneuver is a trade-o� between e�ciency and certainty.
The farther in advance a maneuver is initiated, the more
e�cient it is likely to be in terms of extra distance 
own,
but the less certain will be exactly what maneuver is
required or whether a maneuver is required at all. The
later a maneuver is initiated, on the other hand, the more
certain will be exactly what maneuver is required, but
the less e�cient and more harsh the maneuver is likely
to be. The optimal time to initiate a maneuver can be
determined by minimizing a cost function that re
ects
the statistically expected cost of maneuvering (or not
maneuvering) as a function of time. That cost function
depends on the con
ict probability, the operating cost
per unit of distance traveled, and various other issues
such as passenger comfort and controller workload.

A con
ict is resolved in the horizontal plane by mov-
ing the extended con
ict zone su�ciently far away from
the center of the error ellipse or circle to reduce the con-

ict probability to some desired level. The resolution
maneuver involves changing the direction of the relative
velocity for some period of time, as illustrated in �gure
4. The magnitude of the relative velocity is essentially
irrelevant. It is assumed that the aircraft will complete
the dynamic or accelerating portion of the maneuver and
reach a constant velocity before the encounter (period of
potential con
ict). The velocity changes can therefore
be modeled as instantaneous until the static maneuver
is determined; the dynamic transients can then be prop-
erly accounted for.

The key parameters are the time at which the ma-
neuver is initiated, the time at which it is completed,
and the angular change of the relative velocity. If the
maneuver is completed after the encounter, as shown in
�gure 4, its e�ect is to rotate the extended con
ict zone
by an angle a about the point at which the maneuver
is initiated. If it is completed before the encounter, on
the other hand, and the aircraft return to their original
velocities, its e�ect is to translate the extended con
ict
zone by a distance r perpendicular to the relative veloc-
ity.

The direction of the relative velocity after resolution
can be easily transformed back to the original coordinate
system. Then, changes in the individual aircraft veloci-
ties must be determined to realize that relative velocity.
In general, the change in relative velocity can involve
changes in both the magnitude and the direction of the
individual velocities. The solution is underdetermined,
however, and additional constraints can be applied to
simplify the maneuver. For example, the solution can
be constrained to require only one aircraft to maneuver.
In addition, the maneuver can be further constrained to

consist of only a heading change at constant speed or a
speed change at constant heading, if desired.

This discussion applies mainly to horizontal con
ict
resolution, but vertical con
ict resolution is also very
important for two reasons. First, because the minimum
required separation is about 15 times less in the vertical
axis than it is in the horizontal plane, vertical con
ict
resolution may be more e�cient in many cases, particu-
larly when the minimumpredicted horizontal separation
is small and/or the vertical separation is already almost
large enough to avoid a con
ict. Second, because vertical
con
ict resolution is much simpler, it may be appropri-
ate for con
icts involving three or more aircraft. For
those cases, determination of e�cient horizontal resolu-
tion maneuvers can be mathematically complicated and
computationally intensive, and accurate and reliable ex-
ecution can be operationally di�cult. Separating the
aircraft by altitude, on the other hand, is much simpler.

Validation

The Gaussian statistical model on which the con-

ict probability algorithm is based was determined em-
pirically by analyzing actual air tra�c data [8]. A Monte
Carlo simulation was used to validate the algorithm it-
self. In the Monte Carlo simulation, combinations of
path-crossing angles, minimum predicted separations,
and times to minimum predicted separation were gen-
erated. For each combination, the con
ict probability
was computed and nominal trajectories were generated.
Then the nominal trajectories were perturbed by a series
of random prediction errors, each consisting of constant
cross-track position error and constant along-track veloc-
ity error. These randomly generated errors had the same
expected statistics as were used in the con
ict proba-
bility algorithm: 1 nmi rms cross-track error and 0.25
nmi/min rms along-track error growth rate. Wind-error
cross-correlation was not modeled. The empirical frac-
tion of cases in which con
icts resulted was compared
with the computed con
ict probability.

Table 1 shows a representative sampling of the dif-
ferences between the computed con
ict probabilities and
the Monte Carlo simulation results. One million Monte
Carlo samples were run for each entry in the table, and
each entry corresponds to a particular encounter geom-
etry. The algorithm matches well with the simulation
results. The largest magnitude of the di�erence for all
cases shown is 1.8%, and only 5 of the 72 di�erences in
the table are at or over 1% in magnitude. Most of the
di�erences are well under 1% in magnitude, and many
are at about 0.1%. Given the accuracy of the underlying
error model and the requirements of the application, this
result is more than adequate. A worst-case accuracy of
perhaps 5% would have been considered adequate.

The di�erences are larger than would be statisti-
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Figure 4: Con
ict resolution geometry in transformed coordinate system

cally expected, however. The expected standard devia-
tion for each table entry is

p
Pc(1� Pc)=N , where N is

the number of samples and Pc is the con
ict probability.
Note that Pc(1 � Pc) = 0 if Pc = 0 or Pc = 1, and the
maximum of

p
Pc(1� Pc) is 0.5 when Pc = 0:5. Thus,

the maximum expected standard deviation for any table
entry cannot exceed 0.0005. One reason that the di�er-
ences are larger than expected is that the analytical solu-
tion is based on the assumption that the prediction error
covariance is constant during the encounter, whereas it
actually grows with prediction time.

Aircraft pairs with small path crossing angles tend
to have encounters of longer duration, so the assumption
of constant covariance during the encounter is likely to
be less accurate. This could explain the slightly larger
di�erences in Table 1 for small path crossing angles. Re-
call also that aircraft pairs with small path crossing an-
gles have more wind-error cross-correlation, which is not
modeled in this simulation. Although cross-correlation
can be exactly accounted for in the con
ict probability
algorithm, a model of the actual physical phenomenon
needs to be developed so that values can be determined
for equation 11. The con
ict probability estimates are,
therefore, likely to be less accurate for pairs of aircraft

ying in the same or nearly the same direction, but that
will improve as wind-error cross-correlation is better un-
derstood.

Numerical Examples

A set of numerical examples of con
ict probabilities
and related quantities were generated as a function of
encounter geometry. The aircraft speeds were 8 nmi/min
(480 kts) in every case, a typical speed for commercial
transport aircraft. The con
ict separation distance was

5 nmi, the currently used value for en-route airspace.
The cross-track rms error was 1 nmi, and the along-track
rms error started at zero and grew linearly at a rate of
0.25 nmi/min, unless otherwise stated. These values are
typical for cruise. (This linear-growth model is typical
but is not assumed or required by the algorithm.) Wind-
error cross correlation between aircraft was not modeled.

Figure 5 shows the cumulative separation probabil-
ity, with prediction time as a parameter, where the path-
crossing angle is 90 deg and the minimumpredicted sep-
aration is zero nmi (an exact collision). This value is
the probability that the minimum separation will be less
than the abscissa value. Figure 6 shows the correspond-
ing probability density (the derivative, with respect to
minimum separation, of the cumulative separation prob-
ability shown in �gure 5, determined by numerical dif-
ferentiation). This plot shows how the density function
spreads out as prediction time increases.

It is interesting to see how the expected value of
the minimum separation compares with the predicted
value as prediction time increases. The predicted value
is based on a deterministic trajectory model, with no
consideration for trajectory-prediction errors. The ex-
pected or mean value, on the other hand, is derived
from the cumulative separation probability function P

or the separation probability density function p accord-
ing to E(s) =

R
1

0
[1 � P (x)]dx =

R
1

0
xp(x)dx. Figure

7 shows the expected value of minimum separation as a
function of time to minimumpredicted separation, with
minimum predicted separation as a parameter, where
the path-crossing angle is 90 deg. The expected sepa-
ration diverges from the predicted separation, but the
group of curves shown converge to a common asymptote
for large prediction times. Note that the 0 nmi case does
not intersect the origin because the cross-track rms error

8



Table 1: Monte carlo simulation results: computed mi-
nus empirical con
ict probability based on 1,000,000
samples per entry

path crossing angle, deg
minimum predicted separation, nmi

time to min separation, min
4 8 12 24

15 0 +.000 �.009 �.006 �.002
15 5 �.018 �.003 �.003 �.002
15 10 �.001 �.006 �.005 �.003
30 0 +.001 +.006 +.005 +.001
30 5 �.011 �.004 �.001 +.000
30 10 �.000 �.004 �.004 �.001
45 0 +.002 +.012 +.010 +.003
45 5 �.006 �.003 �.000 +.002
45 10 �.001 �.006 �.006 �.001
90 0 �.000 �.000 +.000 +.001
90 5 �.001 �.001 �.000 �.000
90 10 �.000 �.000 �.000 +.000
135 0 �.000 �.003 �.008 �.012
135 5 +.001 �.001 +.000 �.000
135 10 +.000 +.001 +.004 +.006
180 0 +.000 +.000 +.000 +.000
180 5 �.000 �.000 +.000 �.001
180 10 �.000 �.000 �.000 �.000

is nonzero at time zero.
Figure 8 shows the e�ect of minimumpredicted sep-

aration on con
ict probability. Con
ict probability is
plotted as a function of the time to minimum predicted
separation, with the minimumpredicted separation as a
parameter, where the path-crossing angle is 90 deg. For
small prediction times, the covariances are small and the
con
ict probabilities are a strong function of minimum
predicted separation. For larger prediction times, the
covariances grow and the con
ict probability becomes a
weaker function of the minimum predicted separation.
The con
ict probabilities converge and asymptotically
approach zero as prediction time increases.

Figure 9 shows the e�ect of path-crossing angle on
con
ict probability. Con
ict probability is plotted again
as a function of the time to minimum predicted sepa-
ration, but with the path-crossing angle as a parame-
ter, where the predicted minimum separation is 0 nmi.
As a point of reference, the curve for the path-crossing
angle of 90 deg is a repeat of the corresponding curve
of �gure 8. As the prediction time increases, the con-

ict probability decreases faster for smaller path-crossing
angles. If wind-error cross correlation were taken into
account, however, these curves would be very di�er-
ent for smaller path-crossing angles. A portion of the
trajectory-prediction error would cancel in the position
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Figure 6: Separation probability density

di�erence, and the e�ective error growth rate would be
smaller. Hence the con
ict probabilities for smaller path
angles would be higher than these shown in �gure 9.

Figure 10 shows the e�ect of prediction-error growth
rate on con
ict probability. Con
ict probability is plot-
ted again as a function of the time to minimum pre-
dicted separation, but with the along-track rms error
growth rate as a parameter. The value of 0.25 nmi/min
or 15 kts has been used throughout this paper for the
along-track rms error growth rate, but values of 10 kts
and 20 kts are also shown in the �gure. For each of the
three values of error growth rate, con
ict probability is
plotted for minimum predicted separations of 0 and 10
nmi. Note that the three pairs of curves could be col-
lapsed into one pair by scaling the horizontal axis by the
along-track error growth rate. That is, if the horizontal
axis were the along-track error, the three pairs of curves
would be identical. Showing them separately does, how-
ever, illustrate some important characteristics.
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Figure 7: Expected value of minimum separation

For minimum predicted separations substantially
less than the minimum allowed separation, the con
ict
probability starts at unity and decreases monotonically
as a function of prediction time. The e�ect of larger
error growth rates is to cause the con
ict probability
to decrease more rapidly as a function of prediction
time. For minimum predicted separations substantially
greater than the minimum allowed separation, on the
other hand, the con
ict probability starts at zero, in-
creases to some maximumvalue, and then decreases back
toward zero. This phenomenon occurs because the in-
dividual error ellipses expand and start to overlap, but
then after the maximumcon
ict probability they expand
even more and the probability density function becomes

atter. The e�ect of larger error growth rates is to cause
the con
ict probability to initially increase more rapidly
as a function of prediction time, and then to decrease
more rapidly after the maximum.

Finally, since computational e�ciency is a major
concern in a real-time air tra�c control system, basic
timing tests were performed on the con
ict probabil-
ity algorithm running on a Sun SPARC 10 workstation.
These tests were for the con
ict probability algorithm
only and did not include trajectory prediction, wind-
error modeling, or any other part of the problem. The
average computation time per aircraft pair was slightly
under 0.6 milliseconds. In addition to being theoretically
exact under the stated assumptions, this time is approx-
imately two to four orders of magnitude faster than a
numerical solution, depending on the method and level
of resolution of the numerical integration. Furthermore,
it is fast enough to be used directly in a real-time system.

Conclusion

A method has been developed to accurately and ef-
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�ciently estimate the probability of con
ict for aircraft
pairs in free 
ight. The resulting probability estimates
are necessary for optimal con
ict resolution, and the
analysis behind the estimates is useful for developing an
optimal con
ict resolution algorithm. Some signi�cant
aspects of the problem still need to be addressed, such as
an e�cient approximation for ascending and descending
aircraft and a wind-error cross-correlation model. Al-
though some heuristic methods may be needed to �ll
these gaps, a sound theoretical and numerical founda-
tion has been established. The algorithms and software
developed for this study will soon be incorporated into
a con
ict prediction system and tested on real air tra�c
data. This work will eventually help air tra�c controllers
maintain safe and e�cient free 
ight.
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